Monte Carlo State-Space Likelihoods by Weighted Posterior Kernel Density Estimation

نویسنده

  • Perry DE VALPINE
چکیده

Maximum likelihood estimation and likelihood ratio tests for nonlinear, non-Gaussian state-space models require numerical integration for likelihood calculations. Several methods, including Monte Carlo (MC) expectation maximization, MC likelihood ratios, direct MC integration, and particle Ž lter likelihoods, are inefŽ cient for the motivating problem of stage-structured population dynamics models in experimental settings. An MC kernel likelihood (MCKL) method is presented that estimates classical likelihoods up to a constant by weighted kernel density estimates of Bayesian posteriors. MCKL is derived by using Bayesian posteriors as importance sampling densities for unnormalized kernel smoothing integrals. MC error and mode bias due to kernel smoothing are discussed and two methods for reducing mode bias are proposed: “zooming in” on the maximum likelihood parameters using a focused prior based on an initial estimate and using a posterior cumulant-based approximation of mode bias. A simulated example shows that MCKL can be much more efŽ cient than previous approaches for the population dynamics problem. The zooming-in and cumulant-based corrections are illustrated with a multivariate variance estimation problem for which accurate results are obtained even in 20 parameter dimensions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particle-kernel estimation of the filter density in state-space models

Sequential Monte Carlo (SMC) methods, also known as particle filters, are simulation-based recursive algorithms for the approximation of the a posteriori probability measures generated by state-space dynamical models. At any given time t, a SMC method produces a set of samples over the state space of the system of interest (often termed “particles”) that is used to build a discrete and random a...

متن کامل

A generic approach to simultaneous tracking and verification in video

In this paper, a generic approach to simultaneous tracking and verification in video data is presented. The approach is based on posterior density estimation using sequential Monte Carlo methods. Visual tracking, which is in essence a temporal correspondence problem, is solved through probability density propagation, with the density being defined over a proper state space characterizing the ob...

متن کامل

Bandwidth Selection for Weighted Kernel Density Estimation

Abstract: In the this paper, the authors propose to estimate the density of a targeted population with a weighted kernel density estimator (wKDE) based on a weighted sample. Bandwidth selection for wKDE is discussed. Three mean integrated squared error based bandwidth estimators are introduced and their performance is illustrated via Monte Carlo simulation. The least-squares cross-validation me...

متن کامل

Monte Carlo Local Likelihood for Estimating Generalized Linear Mixed Models

We propose the Monte Carlo local likelihood (MCLL) method for estimating generalized linear mixed models (GLMMs) with crossed random e ects. MCLL initially treats model parameters as random variables, sampling them from the posterior distribution in a Bayesian model. The likelihood function is then approximated up to a constant by tting a density to the posterior samples and dividing it by the ...

متن کامل

Unsupervised State-Space Modelling Using Reproducing Kernels

A novel framework for the design of state-space models (SSM) is proposed whereby the state-transition function of the model is parametrised using reproducing kernels. The nature of SSMs requires learning a latent function that resides in the state space and for which input-output sample pairs are not available, thus prohibiting the use of gradient-based supervised kernel learning. The proposed ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005